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Abstract

In this paper, we survey the current state-of-
art models for structured learning problems, in-
cluding Hidden Markov Model (HMM), Con-
ditional Random Fields (CRF), Averaged Per-
ceptron (AP), Structured SVMs (SVMstruct),
Max Margin Markov Networks (M3N), and an
integration of search and learning algorithm
(SEARN). With all due tuning efforts of vari-
ous parameters of each model, on the data sets
we have applied the models to, we found that
SVMstruct enjoys better performance compared
with the others. In addition, we also propose a
new method which we call the Structured Learn-
ing Ensemble (SLE) to combine these structured
learning models. Empirical results show that our
SLE algorithm provides more accurate solutions
compared with the best results of the individual
models.

1. Introduction

In recent years, the various structured learning problems
have obtained much attention especially in the natural lan-
guage processing community such as part-of-speech tag-
ging and linguistic translation. The goal of structured
learning tasks is to predict complex structures, such as se-
quences, strings, trees, lattices, or graphs. Due to the expo-
nential size of the output space, structured learning prob-
lems tend to be more challenging than the conventional
multi-class prediction problems. In attempting to better
address these problems, many new algorithms have been
proposed and the progress has been encouraging. Some of
the better known methods include HMM (Rabiner, 1989),
CRF (Lafferty et al., 2001), Perceptron (Collins, 2002),
SVMstruct (Tsochantaridis et al., 2005), M3N (Taskar
et al., 2003) and SEARN (Dauḿe III et al., 2006). Al-
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though some limited comparisons were made, no previous
work has systematically compared the performances of the
above structured learning methods in a standardized set-
ting. In this paper, we focus our study on the sequence la-
beling problems. We implemented or used available pack-
ages for each method to survey their performance. The
two data sets we used are the part-of-speech (POS) tag-
ging (The Penn Treebank, 2002) and the Optical Charac-
ter Recognition (OCR) (Kassel, 1995). We also compared
against SVMmulticlass (Crammer & Singer, 2001), a non-
structured learning method as a base-line method. In or-
der to guarantee that each method is calibrated to provide
the best possible performance, we devoted a considerable
amount of effort to finding suitable parameters for each
method. In our experiments, we found that SVMstruct pro-
duces the most accurate predictions in both tasks, but per-
formances of other models are still comparable. Thus, we
believe that a natural way to further improve the perfor-
mance is to combine the predictions of all models.

In recent years, ensemble learning methods have shown
promising results in multiclass classification problems
(Caruana et al., 2004). We expect similar results when ap-
plying ensemble learning to structured learning problems.
However, this is not a trivial task as it is not clear how
to combine sequence predictions from different structured
learning models. For example, in the sequence labeling
task, a straightforward way to combine the sequence pre-
dictions is to apply majority voting on each token position
independently. However, this majority combination does
not take the advantage of the correlation of tokens in the
same sequence. In this paper, we present Structured Learn-
ing Ensemble (SLE), a novel combination method for se-
quence predictions that actually incorporates correlations
of label sequences. In addition, empirical results in section
4 show that SLE produces superior results when compared
with the structured learning algorithms surveyed.

The paper is structured as follows: in section 2, we describe
in detail all models that we evaluated; in section 3, we dis-
cuss how to combine the predictions of multiple models by
SLE; in section 4, we show the results of various models
including SLE; and we conclude the work in section 5.
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2. Structured Learning Models

In sequence labeling problems, the output is a sequence of
labelsy = (y1, ..., yT ) which corresponds to an observa-
tion sequencex = (x1, ..., xT ). If each individual label
can take values from setΣ, then the structured output prob-
lem can be considered as a multiclass classification prob-
lem with |Σ|T different classes.

For SVMstruct, M3N, Perceptron and CRF, a feature map

φ(x, y) = [φ1 φ2 . . . φ|Σ| φtrans]> (1)

is utilized to learn a weight vectorw. In the above equation,
φk=

∑n
i=1 xiI(yi = k) ∀k ∈ {1, . . . , |Σ|} andφtrans =

[c11 c12 . . . cTT ]> wherecij is the number of observed
transitions from theith alphabet to thejth alphabet inΣ.

In the testing phase, the predicted sequencey∗ is computed
as:

y∗ = argmaxyw>φ(x, y). (2)

Theargmax above is solved efficiently using a Viterbi-like
dynamic programming algorithm. In the following sub-
sections, we give a brief description of how each model
is trained. We also note the tuning parameter for each
method.

Even though SVMstruct, M3N, and SVMmulticlass are ca-
pable of incorporating many different kernel functions, for
simplicity we only use a linear kernel for these learning al-
gorithms

K(φ(x, y), φ(x′, y′)) = 〈φ(x, y), φ(x′, y′)〉. (3)

2.1. SVMmulticlass

The multiclass SVM method described in (Crammer &
Singer, 2001) serves as our baseline method. Instead
of using the sequence pair(x, y) as a training example,
SVMmulticlass treats each token-label pair(x, y) in the
sequence as a training example. Given a feature map
φ(x, y) = [φ1 φ2 . . . φ|Σ|]> whereφk = xI(y = k),
SVMmulticlass learns the weight vectorw and slack vari-
ablesξ for the following quadratic optimization problem:

minw,ξ
1
2
‖w‖2 +

C

n

n∑
i=1

ξi (4)

s.t. ∀i, ∀y ∈ Σ \ yi :

〈w, (φ(xi, yi)− φ(xi, y))〉 ≥ 1− ξi.

SVMmulticlass uses a cutting plane method to solve this
optimization problem by iteratively adding the most vio-
lated constraint into the set of constraints being optimized
for in the dual formulation. After we have learnedw and
ξ, the classification of a new examplex is done byf(x) =

argmaxy∈Y〈w, φ(x, y)〉with an exhaustive search of label
y.

The method contains one tuning parameter which isC, the
trade-off between the training error and the margin.

2.2. SVMstruct

In the training phase, given training examples (x1, y1),...,
(xn, yn), SVMstruct solves the following optimization
problem:

minw,ξ
1
2
‖w‖2 + C

n∑
i=1

ξi (5)

s.t. ∀(1 ≤ j ≤ n),∀y :

w>φ(xj , yj) ≥ w>φ(xj , y) + ∆(yj , y)− ξj ,

where∆(yj , y) is the usual loss function, calculated as the
number of tag differences betweenyj andy. Clearly, for
any feasible solution of the above optimization problem,∑

i=1,...,n ξi is an upper bound on the total loss. The way
SVMstruct solves the optimization problem is described in
(Tsochantaridis et al., 2005), where in each iteration the
most violated constraint is added into the working set of
constraints being optimized in dual formulation. The tun-
ing parameter for this method is alsoC.

2.3. Maximum Margin Markov Networks

(Taskar et al., 2003) introduced the Maximum Margin
Markov networks (M3N ) algorithm. In this model, a pair-
wise Markov network is defined as a graphG = (Y,E).
Each edge(i, j) ∈ E is associated with a potential func-
tion

ψij(x, yi, yj) = exp(
n∑

k=1

wkφk(x, yi, yj))

= exp(w>φ(x, yi, yj)), (6)

whereφ(x, yi, yj) is a pairwise basis function. All edges
in the graph denote the same type of interaction, so that
we can define a feature map similar to the one used in
SVMstruct,

φk(x, y) =
∑

(i,j)∈E

φk(x, yi, yj). (7)

The network encodes a joint conditional probability distri-
bution

P (y|x) ∝
∏

(i,j)∈E

ψij(x, yi, yj) = exp(w>φ(x, y)). (8)

The weight vectorw is selected to maximize the margin,
gaining all of the advantages of the SVM framework. The
primal QP for the Maximum Margin Markov network uses
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the same formulation as in equation (5). However, (Taskar
et al., 2003) has proposed a reparametrization of the dual
variables to take advantage of the network structure of the
labeling sequence problem. The dual QP is then solved us-
ing a coordinate descent method analogous to the Sequen-
tial Minimal Optimization (SMO) used for SVMs (Platt,
1999). The parameter we tuned in this model is the same
C as we used in the SVM models.

Note that since both SVMstruct and M3N solve the same
QP with different techniques, we expect that both methods
converge to the same optimum QP solution.

2.4. Averaged Perceptron

The perceptron algorithm for structured learning is de-
scribed in (Collins, 2002). In the training phase, given
training examples with a random initial weight vectorw,
the examples are iteratively processed. Lety be the true
label sequence for inputx andy’ be the predicted label se-
quence. If a mistake is made, i.e,y 6= y’ , the weight vector
is updated as

w = w + φ(x, y)− φ(x, y′). (9)

The final weight vector returned from the perceptron al-
gorithm is the average of all appeared weight vectors
weighted by the length of survival, i.e., number of sen-
tences it correctly predicts before a mistake is made and
the vector gets updated. The tuning parameter of the av-
eraged perceptron algorithm is the number of iterations all
sentences are processed.

2.5. SEARN

SEARN (Dauḿe III et al., 2006) is an algorithm for in-
tegrating search and learning to solve structured prediction
problems. At training time, SEARN operates in an iterative
fashion. In each iteration, it uses a known policy to create
new cost-sensitive classification examples. These exam-
ples are essentially the classification decisions that a policy
would need to get right in order to perform search well.
These are used to learn a new classifier, i.e. a new policy.
The new policy is interpolated with the old policy and the
process repeats. At testing time, it uses the policy returned
by the learning algorithm to construct a sequence of deci-
sionsŷ; and a final predictiony∗ is made by probabilisti-
cally selecting one of the sequences based on a mixing pa-
rameterβ. The multiclass classifier used in the train time
for SEARN is SVMmulticlass, and the tuning parameter in
this algorithm isβ.

2.6. CRF

Conditional random fields (CRFs) (Lafferty et al., 2001;
Peng & McCallum, 2004) are undirected graphical models

trained to maximize a conditional probability. When used
for sequential labeling problems, a common special-case
graph structure used is a linear chain. A linear-chain CRF
with parametersw defines a conditional probability for a
state sequencey = y1...yT given an input sequencex =
x1...xT to be

Pw(y|x) =
1
Zw

exp(w>φ(x, y)), (10)

whereZw is the normalization constant such that the sum
of all the terms is one. The parameters are estimated by
maximizing the following log-likelihood of the training set
penalized by a Gaussian prior over the parameters,

∑
i

logPw(yi|xi)−
∑

k

w2
k

2σ2
k

, (11)

whereσ2
k is the variance of the Gaussian distribution and

is also the tuning parameter for this method. In our experi-
ment we used the “mallet” package (McCallum, 2002) as a
CRF implementation for maximizing equation 11.

2.7. HMM

Hidden Markov Models (HMM) (Rabiner, 1989) are a tra-
ditional statistical tool for modeling generative sequences
that can be characterized by an underlying process generat-
ing an observable sequence. An HMM learns a generative
model over input pairs, each consisting of a sequence of ob-
servations and a sequence of labels. While enjoying much
success in the past (Seymore et al., 1999; Takasu, 2003),
standard HMM models have difficulty modeling multiple
non-independent features. Formally, given an observation
sequence we find the most probable state path for the ob-
served sequence via the Viterbi algorithm, i.e.

maxq1q2...qT
P (q1q2...qT |o1o2...oT ). (12)

whereQ = q1, q2, ..., qT is the state sequence of lengthT ,
andO = o1, o2, ..., oT is the corresponding observations.

The transition matrix is computed as follows:

aij = P (qi|qj) =
Count(qi, qj)
Count(qj)

(13)

whereCount(qi, qj) is the number of timesqi is followed
by qj .

Second, the initial probability distribution is computed as
follows:

πi = P (q1) =
Count(q1)

n
, (14)

wheren is the number of training sequences.
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For discrete observations such as in the case of POS tagging
task, the observation matrix is computed as follows:

bj(k) = P (ok|qj) =
Count(ok, qj) + α

Count(qj) + |Σ|α
(15)

whereCount(ok, qj) is the number of timesok was labeled
asqj , andα is a smoothing parameter. The tuning parame-
ter for the discrete case isα.

For cases when the observations are vectors such as
OCR task, we use the Gaussian continuous-density hid-
den Markov model (CDHMM) to model the state emission
probability,

bj(k) = P (ok|qj) = N (µj ,Σj) (16)

whereµj andΣj is the mean and covariance matrix of ob-
servations emitted in stateqj .

In the experiment, we used a Hidden Markov Model imple-
mentation in MATLAB by (Murphy, 1998).

3. Structured Learning Ensemble (SLE)

For an input examplex and an ensemble of sizeN , pre-
dictions from different trained structured learning mod-
els,{y1, y2, ..., yN}, are combined to produce the ensem-
ble predictiony. The main difference between ensemble
methods for the multiclass classification and the structured-
output classification is the way to combine the predicted re-
sults of the base models. Since there are intrinsic structures
and correlations in the output label sequence, we conjec-
tured that the scheme of majority voting which suits well
for the multi-class problem would not be sufficient. For-
mally, the predicted sequence of the ensemble using the
majority voting scheme is computed as:

y = 〈majority{(y1)1, (y2)1, ..., (yN )1}, ...,

majority{(y1)L, (y2)L, ..., (yN )L}〉, (17)

whereL is the length of all predictions. We have proposed
an alternative combination scheme, called weighted tran-
sition combination, taking into account the correlations of
labels in the output sequence. First, we construct(L − 1)
transition matrices of size(|Σ|× |Σ|), whereΣ is the set of
all possible labels. A transition matrixT k gives the transi-
tion counts at thekth position as follows,

T k(ti, tj) = countk(ti, tj),∀1 ≤ k ≤ (L− 1), (18)

wherecountk(ti, tj) is the number of times the labeltj is
followed by ti at thekth position in the set of predicted
sequences{y1, y2, ..., yN}. Similarly we define the state-
weight vector that gives the count of labelti in positionk
of the predicted sequences:

Uk(ti) = countk(ti),∀1 ≤ k ≤ L (19)

Then, the predicted sequence of SLE is given as

y = argmaxy

L−1∏
k=1

T k(yk, yk+1)
L∏

k=1

Uk(yk) (20)

The argmax in the above equation is computed using a
Viterbi-like dynamic programming. In our experiment, we
compare the two combination schemes, i.e. majority voting
and weighted transition.

The base models that we use to construct the ensemble in-
clude models with different parameter settings from each
learning method. To grow the ensemble from an initial set
of models (possibly empty), we use forward stepwise se-
lection with replacement (Caruana et al., 2004) from the
set of models to find a subset of models that would yield a
better performance.

Algorithm 1 SLE algorithm

Input: a set of models{M1,M2, ...,Mk}
a validation setV
a number of iterationsS

Output: an ensemble model that yields the best perfor-
mance on the validation setV

E0 ← Initialized set of models
for i from 1 to S do
M∗ ← argmaxMp,p∈{1,...,k} PERF(Ei−1 ∪M ′, V )
Ei ← Ei−1 ∪M∗

end for
Return E ← argmaxEp,p∈{1,...,S} PERF(Ep, V )

Our algorithm is described in Algorithm 1.PERF(E, V ) is
the performance of the ensembleE on the data setV such
as sequence loss or token loss which will be described in
the next section. In our experiments, we set the number of
iterations to beS = 200.

We also experimented with some other variations of the en-
semble method. In one variation, each base model can have
their own weights to indicate its confidence level of predic-
tions. We can either use uniformed weights for all models
or use the performance on the validation set as their corre-
sponding weights. The model weights are used as scaling
factors in equation 17, 18 and 19. We also varied the ini-
tial size of the ensemble to be empty or to include the first
k best base models. Finally, we also considered adding
the newly constructed ensemble back to the base model se-
lection pool. The effect of each of the above SLE design
decisions is further analyzed in section 4.3.

4. Experiment Design and Analysis

In this section, we apply the algorithms described in the
previous section to two well-known structured learning
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Figure 1. Various Sequence Labeling Algorithm Performances on POS Data Set with Training Set Size 2000

tasks: Part-of-speech (POS) tagging and handwritten char-
acter recognition (OCR). POS tagging consists simply of
labeling each word in some text with its part of speech.
Our POS data set (The Penn Treebank, 2002) is separated
into five different training sizes: 500, 1000, 2000, 4000,
and 8000 sentences. For each training size, we leave out
10% of the sentences as the validation data. All trained
models including SLE are evaluated on a separate test set
of∼ 1600 sentences. The input features for each token (i.e,
a word in POS task) vary with its position in the sentence.
The features are defined by the user and are usually predic-
tors like “previous word ends with -ation”. In the dataset,
the total number of such simple lexical features is around
450,000.

The OCR data set contains∼ 6000 handwritten words, with
average length of∼ 8 characters, from150 human subjects,
from the data set collected by Kassel (Kassel, 1995). This

data set is divided into10 folds of∼ 600 training,∼ 100
validation, and∼ 5400 testing examples. The input fea-
tures for each token is a vector representation of a16 × 8
binary image of a letter.

To evaluate the performance of all models, we use the av-
erage loss per sequence:

AverageLoss =
1
N

N∑
i=1

 1
Li

Li∑
j=1

I((ŷi)j 6= (yi)j)

 , (21)

whereŷ andy are the predicted sequence and the true se-
quence respectively;N is the total number of test exam-
ples;Li is the length of theith sequence; andI is the 0-1
loss function.

Similarly, token loss (the portion of wrongly classified to-
ken) is also a valid measure of performance. Due to space
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constraints we discuss our results for averaged sequence
loss since it puts uniform weights on each sequence rather
than individual token.

In the following sections, we present the results of various
structured learning models including SLE for both tasks.
The test performances of each method are reported using
the model with appropriate parameter settings that gives
the best result on the validation data. The range of tun-
ing parameters of each model is chosen such that the best
performance of each model is most likely observed.

4.1. The Part of Speech Tagging (POS) Task

Given the tuning parameters of individual models described
in section 2, the performance of each model with respect to
these parameter values is presented in Figure 1. In gen-
eral, we can see the average loss of the validation set as the
tuning parameter varied corresponds well with the average
loss of the test set. The average loss scale (y-axis) of each
plot is chosen for best visualization purposes of individual
models.

The average loss of different models in percentage is pre-
sented in Table 1. For visualization purposes, Figure 2
shows the trend of decreasing average loss as the train-
ing set size increases. In Table 1, each individual model’s
average loss on test data is obtained by using the para-
meter setting with the best validation loss. We observe
that among all base models studied, SVMstruct has the
best performance on all training sets with different sizes,
and our SLE method provides the overall best performance
for every training set size. A t-test at the 95% confi-
dence level indicates that the difference in performances
of SLE and SVMstruct is significant. We also notice that
SVMmulticlass intended as a base-line method gives com-
petitive results on this task. One possible reason is that
the input features for each word contain information of its
neighboring words.

In Table 1, we notice the difference between the perfor-
mances of SVMstruct and M3N. Theoretically, the two
models should converge to the same optimum since they
are solving the same QP formulation with different training
procedures. In our implementation of the M3N algorithm,
we fixed the number of iterations that the algorithm goes
through the training set to 10 since the running time re-
quired by M3N is much more than other algorithms. Hence,
we suspect that the M3N result has not converged to the op-
timal solution.

We also analyzed the running time of each individual
model. The running time reported in this section is av-
eraged across different parameter settings. Since we are
using multiple packages or our own implementations, the
absolute running time is not directly comparable. Instead,

Figure 2. Model Performances on POS Data Set

Table 1. Average Loss of Algorithms on POS Data Set in Percent-
age

Train Size 500 1000 2000 4000 8000
SVMmulti. 8.76 6.93 5.77 4.92 4.35
SVMstruct 8.37 6.58 5.75 4.71 4.08

M3N 10.19 7.26 6.34 5.26 4.19
Perceptron 10.16 7.79 6.38 5.39 4.49
SEARN 10.49 8.92 7.58 6.44 5.48

CRF 16.53 12.51 9.84 7.76 6.38
HMM 23.46 19.95 17.96 17.58 15.87
SLE 7.71 5.93 5.14 4.19 3.67

we definetime incrementin a relative sense: let the run-
ning time of a model on the smallest training set size bet0,
the time increment of that model on a training set of size
s (s∈{500, 1000, 2000, 4000, 8000}) with running timet
is t

t0
. Time increment represents a model’s running time

complexity with respect to training set size. Figure 3 graph-
ically represents how time increment varies with the train-
ing set size for different models in log-log scale. We ob-
serve that the running time curves fall into three different
groups: the first group contains only CRF whose curve
is a straight line indicating that the running time is poly-
nomial in training set size; the second group consists of
SVMstruct, M3N, and Perceptron; and the third group con-
sists of SVMmulticlass, SEARN, HMM. For readers inter-
ested in the absolute running time, the real timet0 for the
models is:SVMmulticlass 1.8m,SVMstruct 6.8m,M3N
12h, Perceptron 6.4m, SEARN 2.1m, CRF 0.53h, HMM
0.23s.
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Figure 3. Various Sequence Labeling Algorithm Running Time
on POS Data Set (log-log plot)

4.2. The Optical Character Recognition (OCR) Task

The relationship between model performance and parame-
ter setting on the OCR task is similar to that of the POS
task. The validation performance agrees with the test per-
formance. Due to space constraints, we omit the figure of
the average loss against parameter setting of each model.

The averaged performance of the 10-fold cross validation
of all models as well as SLE is shown in Figure 4. Again,
we see that SLE is the best performing sequence labeling
algorithm with the average loss of 20.58%, and SVMstruct

being the best among individual models with average loss
21.16%. Surprisingly unlike the POS task, the performance
of the HMM model is reasonably good (23.70%). Hence,
depending on the tasks generative model such as HMM can
be as competitive as most other discriminative models. For
the same reason described in section 4.1, M3N performance
does not converge to that of SVMstruct.

4.3. SLE Analysis

In Section 3, we described the various design decisions
we needed to make for SLE, including 4 categories: ini-
tial ensemble size (0 or 5), base model prediction com-
bination method (weighted transition or majority voting),
model weight assignment (uniform or 1-verification loss),
and whether or not we add the newly learned ensemble
model back to the model selection pool. Thus, we have
16 ensemble methods in total. In order to assess the sig-
nificance of each category, we present the average loss re-
sults in Table 2, where each number is the average loss of
8 models with the column category fixed. Using a t-test at
the 95% confidence level, only the result difference in the
combination method category is significant. As a result,

Figure 4. Model Performances on OCR Data Set

we propose the weighted transition as the SLE combina-
tion mechanism.

In Table 3, we present the percentage of individual mod-
els selected in the final model learned by SLE. We observe
that SVMstruct is not only the best performing individual
model but also the most frequently selected by SLE. In ad-
dition, the frequency that a model is selected by SLE is
not clearly related to its performance. Hence, all models,
rather than only a few leading individual ones, contribute
to the superior performance of SLE.

5. Conclusion

In this paper, we have surveyed the current state-of-art
structured learning algorithms. For the first time, these
methods are evaluated in uniform environment with two
well-known structured learning tasks, namely the Part of
Speech Tagging (POS) task and Optical Character Recog-
nition (OCR) task. Empirical evidence suggests that
SVMstruct provides best performance in both learning
tasks. We also proposed the Structured Learning Ensem-
ble (SLE), which combines the predictions of various base
level models. Although SLE bears a resemblance of tra-
ditional ensemble method in multiclass predictions, struc-
tured learning tasks require SLE to take the correlations in
output label sequences into consideration. On both POS
and OCR tasks, SLE has exhibited superior performance
compared with the single best model SVMstruct. Other
ensemble techniques including bagging and boosting have
been shown to work well with traditional classification
problems. For future work, we will extend these techniques
for structured learning problems.
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Table 2. Average Loss in Percentage of Ensemble Model with Different Category Settings
POS Init. Size Combination Weight Add Model

Train Size 0 5 wei. transition majority uniform verify loss no yes
500 7.58 7.58 7.53 7.63 7.58 7.58 7.62 7.54
1000 5.97 5.93 5.93 5.96 5.96 5.93 5.95 5.94
2000 5.18 5.31 5.17 5.32 5.25 5.23 5.22 5.27
4000 4.31 4.28 4.26 4.33 4.31 4.27 4.28 4.30
8000 3.68 3.68 3.66 3.69 3.68 3.68 3.67 3.69

OCR 20.73 20.64 20.60 20.78 20.72 20.66 20.69 20.69

Table 3. Percentage of Individual Models Included in SLE
Data Set SVMstruct SVMmulti. CRF Perceptron M3N SEARN HMM

POS 53.55 16.53 7.79 6.59 6.54 1.81 7.19
OCR 52.27 25.70 9.47 3.61 5.97 0.79 2.20
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